ISOLATION AND PURIFICATION OF HEN EGG-WHITE LYSOZYME

Irene Morencos, Paula Oliva, Lydia Moreno

Dept. Biochemistry and Molecular Biology I. Faculty of Chemestry. Complutense University of Madrid, Spain.

INTRODUCTION

The term lysozyme includes a whole group of enzymes which catalyses the hydrolysis of glycosidic bonds β(1-4) of the bacterial walls, precisely between polymers N-acetylmuramic and N-acetyl-D-glucosamine in a peptidoglican. The isolation and purification of lysozyme have been achieved using an acid treatment, a heat treatment and a molecular exclusion chromatography with G-75 Sephadex. Alternatively, a ionic exchange chromatography was done in order to compare the results. Then, to determine the activity and concentration of the lysozyme a dialysis was done. Next, the composition of proteins was analysed by a PAGE-SDS electrophoresis. Finally, a purification table was elaborated. The aim of this investigation is proposing a method to isolate and purificate lysozyme from the white of a hen egg according to its properties.

- Acid treatment: slightly yellow extract, negligible sediment.
- 2. **Heat treatment**: see-through extract, sediment was cloudy.

Figure 1. Chromatografic behaviour of E2 on Sephadex G-75.

Figure 2. BSA calibration curve to determinate protein concentration in each of enzymatic extracts.

190L19

Figure 3. SDS-PAGE gel electrophoresis (15% acrilamide). **Lane 2**: E1 at 1/20 dilution (15 μ L). **Lane 3**: E2 at 1/20 dilution (15 μ L). **Lane 4**: E3 (20 μ L). **Lane 5**: E3 (5 μ L). **Lane 6**: MW standard proteins (10 μ L).

Figure 4. Standard curve of log molecular weight vs relative mobility (Rf) of "MW standard proteins". Rf of lysozyme: 0.715 (red point); molecular weight determinated is 14.1 KDa.

Table 1. Purification table of lysozyme (using exclusion chromatography)

STAGE	TOTAL	TOTAL	TOTAL	SPECIFIC	YIELD	PURIFICATION
	VOL.	PROTEIN	ACT.	ACT.	(%)	(fold)
	(mL)	(mg)	(UAL)	(UAL/mg)		
E1	15	171	116000	678.36	100	1
E2	13.6	149.6	105170	703.00	90.66	1
E3'	36	5.04	26400	5238.09	22.76	7.72

Table 2. Purification table of lysozyme (using ionic exchange chromatography)

			, ,			·
STAGE	TOTAL	TOTAL	TOTAL	SPECIFIC	YIELD	PURIFICATION
	VOL.	PROTEIN	ACT. (UAL)	ACT.	(%)	(fold)
	(mL)	(mg)		(UAL/mg)		
E1	15	156	150000	961.54	100	1
E2	13	124.8	112666	902.78	75.11	0.94
Ε3	28	4 872	96133	19731 78	64 09	20.52

CONCLUSIONS

Table 1: low yield for E3 (>25%) considering the purification (7.72). **Table 2**: high yield for E3 (>50%) considering the purification is greater (20.52); E2 has been contaminated in heat treatment (purification is 0.94). In both process, the lysozyme has been partially purificated; therefore, the specific activity increase in each stage. Comparing the results, in ionic exchange chromatography, the results are reasonably better than the results of exclusion chromatography. **Improvements for isolation and purification**: elimination of heat treatment, considering the sample can be contaminated; connect both chromatographies, to get a better isolation and purification.

REFERENCES:

- 1. Roy, I., Rao, M.V.S. and Gupta, M. N. (2003). "An integrated process for purification of Lysozime, Ovalbumin, and Ovomucoid from egg white". *Biochem.Biotechnol* 111,56-64.
- 2. Islam, R., Kite, J., Baker, A.S., Ching Jr., A. and Islam, M.R. (2006). "Affinity purification of hen egg lysozime using sephadex G75". *African Journal of Biotechnology*. Vol.5-No 20.
- 3. Desert, C., Guerin-Dubiard, C., Nau, F., Jan, G., Val, F., Mallard, J. (2001). "Comparison of Different Electrophoretic Separations of Hen Egg White Proteins". *J. Agric. Food Chem.* 49(10):4553-61.