KINETIC CARACTERIZATION OF THE ALMONF 3-GLUCOSIDASE
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INTRODUCIHON IMATHERIALSTANDIVIETHODS

B-glucosidases (C 3.2.1.21) are enzymes that catalyze the hydrolisis
of a O-B-glycosidic bond at the non-reductive terminal end extreme of
oligosaccharides, disaccharides and aril- or aquil-B-D-glucosides,
releasing [-D-glucose as a product. (1) The chosen glucosidase
comes from sweet almond (Prunus dulcis) belonging to the GH-1
family (glycoside hydrolases) (2) On plants, these enzymes perform
different functions as the remodeling of the cellular wall, the
mechanism of chemical defense against pathogens or the
participation in the metabolism through an activation of different

The materials used for the experiment were: commercial solution of B-
glucosidase from sweet almonds (biological material), p-nitrophenol, p-
nitrophenyl-B-D-glucoside, glucose and 6-gluconolactone from the
chemical producer FLUKA. Also, others chemical reagents were
employed, such as the NaOH, HCI, citric acid and phosphate salts,
supplied by PANREAC. The same general diagram was used to carry out
each enzyme assay:
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2. DETERMINATION OF KINETIC 4. INHIBITION STUDIES
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Table 1. Kinetic parameters.
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Figure 5. A) Lineweaver-Burk for some inhibitor concentration (blue O
uM, orange 50 uM, yellow 100 uM and grey200 M) and B) Dixon plot.
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DIRECT REPRESEN- 1o 2209 Michaelis-Menten. Knowing that the enzyme shows a mechanism with two steps and that
MICHAIET_ITSH-]I':EHTEH 11,51 2,784 B-D-glucose interacts with the enzyme in its free state, we know that
this product will be the last one to be released, after pNP. So we will

have one first step where pNPG will react with the enzyme and after
the reaction, the pNP will be released leaving behind an intermediate
form of the enzyme. Then, the second and final step begins when H,0
enters the catalytic site of the enzyme releasing B-D-glucose and
regenerating the original state of the enzyme. All of these deductions
indicate that our enzyme follows a Ping-Pong mechanism.
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Figure 6. Mechanism Ping-Pong of 8-glucosidase.



